
dtee

Simon Arlott

Apr 20, 2024





CONTENTS

1 Description 1

2 Purpose 3

3 Contents 5

4 Resources 11

5 Pronunciation 17

i



ii



CHAPTER

ONE

DESCRIPTION

Run a program with standard output and standard error copied to files while maintaining the original standard output
and standard error as normal.

1



dtee

2 Chapter 1. Description



CHAPTER

TWO

PURPOSE

To run programs from cron, suppressing all output unless the process outputs an error message or has a non-zero exit
status whereupon the original output will be written as normal and the exit code will be appended to standard error.

It will do this by default when invoked as cronty, providing an alternative to cronic but without splitting up the
output.

(Also, to do tee(1) with standard output and standard error at the same time.)

3

https://habilis.net/cronic/
https://man7.org/linux/man-pages/man1/tee.1.html


dtee

4 Chapter 2. Purpose



CHAPTER

THREE

CONTENTS

3.1 Architecture

3.1.1 Background

Commands on Unix systems output messages to two logical streams: standard output (for normal messages) and stan-
dard error (for error messages). In the normal execution of the command there may be messages of both types being
output and they are usually related so it’s important that they appear in the correct order. This is normally achieved by
having the file descriptors of both streams be the same underlying destination (a terminal, pipe to another process, a
file). There is no distinction between streams by the operating system when the message is written.

3.1.2 Problem

Commands are not always run separately by a user on a terminal. They may be run from a script or unattended from
cron(8).

When this happens it can be useful to know if the process wrote any error messages, so typically the file descriptors for
standard output and standard error would be different destinations (two separate log files). The script can then easily
distinguish between normal messages and error messages.

This works well to determine the outcome of the command and examine any messages it outputs. A problem arises
when it is necessary to provide the original output of the command to a user. It is not possible to guarantee the reading
of messages from two file descriptors in the correct order and there is no assistance provided by the operating system
for doing this.

The output from commands can be confusing if the messages are no longer in the original order. Splitting the output
up into two blocks (normal and error) is not helpful.

Workarounds

One option has been to use LD_PRELOAD to modify the behaviour of the process and identify the destination stream as
the messages are being written. This is error-prone because there are lots of different library functions for outputting
to standard streams as well as functions within the C library that may bypass their external API and output messages
directly.

Processes may also write directly to the file descriptors using system calls or their executables may be statically linked,
preventing preloading from working. They may have multiple threads to complicate the manipulation of messages. For
security reasons it’s not possible to preload libraries into setuid executables using LD_PRELOAD so this option doesn’t
work for those commands.

5

https://man7.org/linux/man-pages/man8/cron.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html


dtee

3.1.3 Solution

Splitting of standard output and standard error while retaining the order of output can be performed using three unix(7)
datagram sockets. A single input socket is used (so that messages can be read in order) and two output sockets are
connected to the same input socket (so that they share the same reliable ordered buffer).

The source address of each message is provided by the operating system on every read so it is possible to identify which
output stream was used by binding to different paths for each stream.

It would be preferable to use sequenced-packet sockets instead but that would require two pairs of sockets because it is
not possible to have one socket connected to two peers. Perhaps there will be a sockettriple function in the future
that can do this.

Alternatives

It could be possible to use sctp(7) instead but that may not be available on all platforms and would require using the
local network interface for communication.

3.2 Dependencies

The following tools and libraries are required as part of the build process, to run dtee or to produce documentation.

3.2.1 Build

Compile

• Boost 1.56+ (1.82+ preferred)

• Clang 5+ or GNU GCC 5.3+

• GNU gettext

• GNU Make 3.80+ (optional)

• Meson 0.63+

– Ninja

– Python 3

Static Analysis

• Clang Static Analyzer

• Cppcheck

6 Chapter 3. Contents

https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/sctp.7.html
https://www.boost.org/
https://clang.llvm.org/
https://www.gnu.org/software/gcc/
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/make/
https://mesonbuild.com/
https://ninja-build.org/
https://www.python.org/
https://clang-analyzer.llvm.org/
https://cppcheck.sourceforge.io/


dtee

Test

• GNU Bash 4.1+

• GNU Core Utilities

• GNU Diff Utilities

• GNU Find Utilities

• GNU GCC gcov

• lcov

3.2.2 Runtime

• Boost

• GNU libintl

• UNIX domain sockets

3.2.3 Documentation

• Sphinx 4.1.0+

3.3 Limitations

Datagram sockets can only process writes as individual packets with a maximum packet size. Therefore, if the program
being run attempts to write(2) more than this size in one call the write will fail and that part of the output will be
lost.

This is not usually a problem because the default socket buffer size is usually much higher than the size programs
typically write with. For safety, the socket buffer size will be increased to at least PIPE_BUF and BUFSIZ if the default
is smaller than these values.

Writes to the socket (on Linux or GNU Hurd) will block until there is capacity available in the socket buffer. If the
process uses sendfile(2) then (on Linux) the writes occur in PIPE_BUF sized chunks so it works as normal, but why
are you using an interactive program that outputs such large quantities of data?

It is not possible to open /dev/stdout or /dev/stderr because they are sockets. No program would need to do this
but like the use of /dev/stdin it may be desirable in scripts to work around limitations in file descriptor handling
(however this is unlikely for an interactive program).

For more details read the architecture document.

3.3. Limitations 7

https://www.gnu.org/software/bash/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/linux-test-project/lcov
https://www.boost.org/
https://www.gnu.org/software/gettext/
https://www.sphinx-doc.org/
https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man0/limits.h.0p.html
https://man7.org/linux/man-pages/man0/stdio.h.0p.html
https://man7.org/linux/man-pages/man2/sendfile.2.html
https://man7.org/linux/man-pages/man0/limits.h.0p.html


dtee

3.3.1 BSD Operating Systems

Writes to the socket do not block when the receive buffer of the peer socket is full. The default socket receive buffer is
quite small so it will be raised which avoids problems some of the time but messages are likely to be lost from programs
that write large amounts of data very quickly or do so inefficiently (1 byte at a time).

On some versions of some operating systems the communication will be too unreliable for any kind of use and may or
may not report errors.

3.3.2 GNU Hurd

Does not currently have support for returning addresses of Unix sockets, so none of the output works. It may be possible
to implement custom pipe-like objects with three file descriptors in user space.

Writes larger than the page size (4KB) are truncated and there’s no way to increase the size of the socket buffer.

3.3.3 Cygwin

Performs as well as Linux but the maximum amount of data that can be streamed quickly is limited by the size of the
socket buffer (which will will be raised to 2MB).

There are security issues because the underlying implementation of Unix sockets is a UDP socket on localhost. This
presents an opportunity for another process to bind the same port after dtee or the command being run exits, which
will allow it to:

• Write additional input for dtee after the child process has exited (until waitpid(2) is processed).

• Read output from child processes if the program being run forks into the background (causing dtee to exit).

• Read output from child processes if dtee is killed.

3.4 Build and install

The meson build system is used to build and install dtee:

meson build/release # configure dtee build
ninja -C build/release # compile
ninja -C build/release test # run the tests
ninja -C build/release install # install to default locations

A Makefile that calls meson and ninja is provided for convenience.

See the list of dependencies for more information on build, test and runtime requirements.

8 Chapter 3. Contents

https://man7.org/linux/man-pages/man2/waitpid.2.html
https://mesonbuild.com/


dtee

3.4.1 Cygwin

The build and test process makes use of symbolic links. If the repository is cloned outside of Cygwin these will not
be present unless unprivileged symbolic links are enabled and all environments are configured to use native symbolic
links.

Some of the tests cannot be run from an elevated process and will be skipped.

3.5 Manual page

3.5.1 Synopsis

dtee [option]. . . <command> [arguments]. . .

cronty [option]. . . <command> [arguments]. . .

3.5.2 Description

Run command with standard output and standard error copied to files while maintaining the original standard output
and standard error as normal.

3.5.3 Options

Output files

Standard streams can be written to any number of specified files, in addition to normal output. Output is not line
buffered.

-o <filename>, --out-append=<filename> Append standard output to filename, creating the file if it
does not exist.

-O <filename>, --out-overwrite=<filename> Copy standard output to filename, truncating and over-
writing existing content.

-e <filename>, --err-append=<filename> Append standard error to filename, creating the file if it does
not exist.

-E <filename>, --err-overwrite=<filename> Copy standard error to filename, truncating and overwrit-
ing existing content.

-c <filename>, --combined-append=<filename> Append standard output and standard error to file-
name, creating the file if it does not exist.

-C <filename>, --combined-overwrite=<filename> Copy standard output and standard error to file-
name, truncating and overwriting existing content.

3.5. Manual page 9

https://blogs.windows.com/windowsdeveloper/2016/12/02/symlinks-windows-10/


dtee

General options

-i, --ignore-interrupts Ignore keyboard interrupt signals (SIGINT). This does not prevent the com-
mand being executed (and other processes in the same progress group) from re-
ceiving the signal.

-q, --cron Operate in cron mode (this is implied when invoked as cronty). Suppresses all
output unless the process outputs an error message or has a non-zero exit status
whereupon the original output will be written as normal and the exit code will be
appended to standard error.

Miscellaneous

-h, --help Display usage information and exit.

-V, --version Output version information and exit.

3.5.4 See also

Full documentation

10 Chapter 3. Contents

https://dtee.readthedocs.io/


CHAPTER

FOUR

RESOURCES

4.1 Change log

4.1.1 Unreleased

4.1.2 1.1.1 – 2024-04-20

Standard I/O checks, fixes for tests, and use of newer Boost.Asio (1.79 and 1.82) and C++17 features.

Changed

• Use the new Boost.Asio interface for setting the SA_RESTART flag on signal handlers when using Boost 1.82+.

• Disable “error location” in exception messages when building with Boost.Asio 1.79 because these exceptions
are already caught and properly identified.

• Configure standard output and standard error to be blocking.

• Use std::filesystem from C++17 instead of boost::filesystem.

• Ensure that standard output and standard error exist.

Fixed

• Error message checks in tests when building with Boost 1.78.

• Locale handling in i18n tests when running on glibc 2.39.

4.1.3 1.1.0 – 2021-05-30

Bug fixes and support for internationalisation.

11



dtee

Added

• Internationalisation of output text messages.

Changed

• Normalise error messages.

• Make signals non-interrupting by adding the SA_RESTART flag after Boost.Asio sets the signal handler
(chriskohlhoff/asio issue #646) instead of trying to wrap calls to sigaction(2).

• Trivial performance improvements.

• Improved robustness when signals are received between forking a child process and executing the command.

• Errors writing to additional output files will always be reflected in the exit status even in cron mode.

Fixed

• Race condition between the command immediately exiting and being ready to handle SIGCHLD.

• Handle errors when the temporary directory name is too long or unusable.

4.1.4 1.0.1 – 2018-12-22

Update to avoid causing a trivial memory leak in Boost.

Fixed

• Memory leak in Boost program_options resulting from differing boost::smart_ptr implementations (boost-
org/program_options issue #70).

4.1.5 1.0.0 – 2018-12-09

First stable release.

Added

• Best effort support on Darwin (macOS).

• Best effort support on Cygwin.

Fixed

• Invalid usage messages now use standard error instead of standard output.

• Check build version matches the release version.

12 Chapter 4. Resources

https://github.com/chriskohlhoff/asio/issues/646
https://man7.org/linux/man-pages/man2/sigaction.2.html
https://github.com/boostorg/program_options/issues/70
https://github.com/boostorg/program_options/issues/70
https://opensource.apple.com/
https://www.cygwin.com/


dtee

4.1.6 0.0.1 – 2018-11-11

Update to allow improvements in packaging.

Fixed

• Infinite loop in the test scripts if check variables are undefined (this is unlikely).

• Support for unity builds when -Wshadow is used.

4.1.7 0.0.0 – 2018-11-09

Initial development release for packaging.

Added

• Full support on Linux.

• Best effort support on FreeBSD and OpenBSD.

• Basic support on NetBSD and DragonFlyBSD.

• Compiles on GNU Hurd (but doesn’t work).

• Comprehensive automated tests of all functionality.

4.2 Packages

Source packages for Linux distributions are kept in the dtee-package repository.

4.2.1 Debian binary packages

Packages are available for:

Debian

Follow the instructions for your release. If you are using a newer release than the ones listed then use the builds for the
most recent prior version.

Debian 12 (bookworm)

Run the following commands to install the repository public key, APT data source dtee-debian-bookworm.
list and then dtee:

wget https://dtee.bin.uuid.uk/debian/repo-key.gpg \
-O /etc/apt/keyrings/dtee.gpg

echo "deb [signed-by=/etc/apt/keyrings/dtee.gpg]" \
"https://dtee.bin.uuid.uk/debian/ bookworm main" \

(continues on next page)

4.2. Packages 13

https://mesonbuild.com/Unity-builds.html
https://www.kernel.org/
https://www.freebsd.org/
https://www.openbsd.org/
https://www.netbsd.org/
https://www.dragonflybsd.org/
https://www.gnu.org/software/hurd/
https://github.com/nomis/dtee-package
https://en.wikipedia.org/wiki/APT_(Debian)


dtee

(continued from previous page)

>/etc/apt/sources.list.d/dtee.list

apt update
apt install dtee

Debian 11 (bullseye)

Run the following commands to install the repository public key, APT data source dtee-debian-bullseye.
list and then dtee:

mkdir -m 0755 -p /etc/apt/keyrings

wget https://dtee.bin.uuid.uk/debian/repo-key.gpg \
-O /etc/apt/keyrings/dtee.gpg

echo "deb [signed-by=/etc/apt/keyrings/dtee.gpg]" \
"https://dtee.bin.uuid.uk/debian/ bullseye main" \
>/etc/apt/sources.list.d/dtee.list

apt update
apt install dtee

Debian 10 (buster)

Run the following commands to install the repository public key, APT data source dtee-debian-buster.list
and then dtee:

mkdir -m 0755 -p /etc/apt/keyrings

wget https://dtee.bin.uuid.uk/debian/repo-key.gpg \
-O /etc/apt/keyrings/dtee.gpg

echo "deb [signed-by=/etc/apt/keyrings/dtee.gpg]" \
"https://dtee.bin.uuid.uk/debian/ buster main" \
>/etc/apt/sources.list.d/dtee.list

apt update
apt install dtee

Ubuntu

Follow the instructions for your release. If you are using a newer release than the ones listed then use the builds for the
most recent prior version.

14 Chapter 4. Resources

https://en.wikipedia.org/wiki/APT_(Debian)
https://en.wikipedia.org/wiki/APT_(Debian)


dtee

Ubuntu 22.04 LTS (Jammy Jellyfish)

Run the following commands to install the repository public key, APT data source dtee-ubuntu-jammy.list
and then dtee:

wget https://dtee.bin.uuid.uk/ubuntu/repo-key.gpg \
-O /etc/apt/keyrings/dtee.gpg

echo "deb [signed-by=/etc/apt/keyrings/dtee.gpg]" \
"https://dtee.bin.uuid.uk/ubuntu/ jammy main" \
>/etc/apt/sources.list.d/dtee.list

apt update
apt install dtee

Ubuntu 20.04 LTS (Focal Fossa)

Run the following commands to install the repository public key, APT data source dtee-ubuntu-focal.list
and then dtee:

mkdir -m 0755 -p /etc/apt/keyrings

wget https://dtee.bin.uuid.uk/ubuntu/repo-key.gpg \
-O /etc/apt/keyrings/dtee.gpg

echo "deb [signed-by=/etc/apt/keyrings/dtee.gpg]" \
"https://dtee.bin.uuid.uk/ubuntu/ focal main" \
>/etc/apt/sources.list.d/dtee.list

apt update
apt install dtee

4.2.2 RPM packages

Packages are available for:

Fedora

Supported versions: 38 and 39.

Save the repository configuration file dtee-fedora.repo to /etc/yum.repos.d/dtee-fedora.repo.

Run the following command:

yum install dtee

Yum will prompt to confirm the repository public key:

4784 9A12 DAF9 BD2A F550 5FBB 4FF8 86F3 1820 6BD9

4.2. Packages 15

https://en.wikipedia.org/wiki/APT_(Debian)
https://en.wikipedia.org/wiki/APT_(Debian)


dtee

Red Hat Enterprise Linux

Yum will prompt to confirm the repository public key:

4784 9A12 DAF9 BD2A F550 5FBB 4FF8 86F3 1820 6BD9

Red Hat Enterprise Linux 9

Save the repository configuration file dtee-rhel9.repo to /etc/yum.repos.d/dtee-rhel9.repo.

Run the following command:

yum install dtee

Red Hat Enterprise Linux 8

Save the repository configuration file dtee-rhel8.repo to /etc/yum.repos.d/dtee-rhel8.repo.

Run the following command:

yum install dtee

Red Hat Enterprise Linux 7

Save the repository configuration file dtee-rhel7.repo to /etc/yum.repos.d/dtee-rhel7.repo.

Run the following command:

yum install dtee

Red Hat Enterprise Linux 6

Boost 1.60 from the Red Hat Software Collections is required.

Save the repository configuration file dtee-rhel6.repo to /etc/yum.repos.d/dtee-rhel6.repo.

Run the following commands:

subscription-manager repos --enable "rhel-*-rhscl-6-rpms"
yum install dtee

4.2.3 Arch Linux package

A package for dtee is available to build from the Arch User Repository.

16 Chapter 4. Resources

https://aur.archlinux.org/packages/dtee/
https://aur.archlinux.org/


CHAPTER

FIVE

PRONUNCIATION

dtee
/di.ti/

cronty
/krn.ti/

17


	Description
	Purpose
	Contents
	Architecture
	Background
	Problem
	Workarounds

	Solution
	Alternatives


	Dependencies
	Build
	Compile
	Static Analysis
	Test

	Runtime
	Documentation

	Limitations
	BSD Operating Systems
	GNU Hurd
	Cygwin

	Build and install
	Cygwin

	Manual page
	Synopsis
	Description
	Options
	Output files
	General options
	Miscellaneous

	See also


	Resources
	Change log
	Unreleased
	1.1.1 – 2024-04-20
	Changed
	Fixed

	1.1.0 – 2021-05-30
	Added
	Changed
	Fixed

	1.0.1 – 2018-12-22
	Fixed

	1.0.0 – 2018-12-09
	Added
	Fixed

	0.0.1 – 2018-11-11
	Fixed

	0.0.0 – 2018-11-09
	Added


	Packages
	Debian binary packages
	Debian
	Debian 12 (bookworm)
	Debian 11 (bullseye)
	Debian 10 (buster)

	Ubuntu
	Ubuntu 22.04 LTS (Jammy Jellyfish)
	Ubuntu 20.04 LTS (Focal Fossa)


	RPM packages
	Fedora
	Red Hat Enterprise Linux
	Red Hat Enterprise Linux 9
	Red Hat Enterprise Linux 8
	Red Hat Enterprise Linux 7
	Red Hat Enterprise Linux 6


	Arch Linux package


	Pronunciation

