

dtee (double tee)

[image: Logo (standard output and standard error represented as two separate T-junctions that split off the content to each side while the content also flows normally)]
Description

Run a program with standard output and standard error copied to files while
maintaining the original standard output and standard error as normal.

Purpose

To run programs from cron, suppressing all output unless the process outputs an
error message or has a non-zero exit status whereupon the original output will
be written as normal and the exit code will be appended to standard error.

It will do this by default when invoked as cronty, providing an alternative
to cronic [https://habilis.net/cronic/] but without splitting up the output.

(Also, to do tee(1) [http://man7.org/linux/man-pages/man1/tee.1.html] with standard output and standard error at the same
time.)

Contents

	Architecture

	Dependencies

	Limitations

	Build and install

	Manual page

Resources

	Source code [https://github.com/nomis/dtee]

	Releases [https://github.com/nomis/dtee/releases]

	Change log

	Packages

	Issue tracker [https://github.com/nomis/dtee/issues]

Pronunciation

	dtee

	/diː.ˈtiː/

	cronty

	/ˈkrɒn.tiː/

Architecture

Background

Commands on Unix systems output messages to two logical streams: standard output
(for normal messages) and standard error (for error messages). In the normal
execution of the command there may be messages of both types being output and
they are usually related so it’s important that they appear in the correct
order. This is normally achieved by having the file descriptors of both
streams be the same underlying destination (a terminal, pipe to another
process, a file). There is no distinction between streams by the operating
system when the message is written.

Problem

Commands are not always run separately by a user on a terminal. They may be run
from a script or unattended from cron(8) [http://man7.org/linux/man-pages/man8/cron.8.html].

When this happens it can be useful to know if the process wrote any error
messages, so typically the file descriptors for standard output and standard
error would be different destinations (two separate log files). The script can
then easily distinguish between normal messages and error messages.

This works well to determine the outcome of the command and examine any
messages it outputs. A problem arises when it is necessary to provide the
original output of the command to a user. It is not possible to guarantee the
reading of messages from two file descriptors in the correct order and there
is no assistance provided by the operating system for doing this.

The output from commands can be confusing if the messages are no longer in the
original order. Splitting the output up into two blocks (normal and error) is
not helpful.

Workarounds

One option has been to use LD_PRELOAD [http://man7.org/linux/man-pages/man8/ld.so.8.html] to modify the behaviour of the process
and identify the destination stream as the messages are being written. This is
error-prone because there are lots of different library functions for outputting
to standard streams as well as functions within the C library that may bypass
their external API and output messages directly.

Processes may also write directly to the file descriptors using system calls
or their executables may be statically linked, preventing preloading from
working. They may have multiple threads to complicate the manipulation of
messages. For security reasons it’s not possible to preload libraries into
setuid executables using LD_PRELOAD [http://man7.org/linux/man-pages/man8/ld.so.8.html] so this option doesn’t work for those
commands.

Solution

Splitting of standard output and standard error while retaining the order of
output can be performed using three unix(7) [http://man7.org/linux/man-pages/man7/unix.7.html] datagram sockets. A single input
socket is used (so that messages can be read in order) and two output sockets
are connected to the same input socket (so that they share the same reliable
ordered buffer).

The source address of each message is provided by the operating system on every
read so it is possible to identify which output stream was used by binding to
different paths for each stream.

It would be preferable to use sequenced-packet sockets instead but that would
require two pairs of sockets because it is not possible to have one socket
connected to two peers. Perhaps there will be a sockettriple function in the
future that can do this.

Alternatives

It could be possible to use sctp(7) [http://man7.org/linux/man-pages/man7/sctp.7.html] instead but that may not be available on
all platforms and would require using the local network interface for
communication.

Dependencies

The following tools and libraries are required as part of the build process, to
run dtee or to produce documentation.

Build

Compile

	Boost [https://www.boost.org/] 1.55+

	Clang [https://clang.llvm.org/] 3.9+ or GNU GCC [https://www.gnu.org/software/gcc/] 4.8+

	GNU Make [https://www.gnu.org/software/make/] 3.80+ (optional)

	Meson [https://mesonbuild.com/] 0.46+

	Ninja [https://ninja-build.org/]

	Python 3 [https://www.python.org/]

Static Analysis

	Clang Static Analyzer [https://clang-analyzer.llvm.org/]

	Cppcheck [http://cppcheck.sourceforge.net/]

Test

	GNU Bash [https://www.gnu.org/software/bash/]

	GNU Core Utilities [https://www.gnu.org/software/coreutils/]

	GNU Diff Utilities [https://www.gnu.org/software/diffutils/]

	GNU Find Utilities [https://www.gnu.org/software/findutils/]

	GNU GCC Gcov [https://gcc.gnu.org/onlinedocs/gcc/Gcov.html]

	Lcov [https://github.com/linux-test-project/lcov]

Runtime

	Boost [https://www.boost.org/]

	UNIX domain sockets

Documentation

	Sphinx [https://www.sphinx-doc.org/] 1.3+

Limitations

Datagram sockets can only process writes as individual packets with a maximum
packet size. Therefore, if the program being run attempts to write(2) [http://man7.org/linux/man-pages/man2/write.2.html]
more than this size in one call the write will fail and that part of the output
will be lost.

This is not usually a problem because the default socket buffer size is usually
much higher than the size programs typically write with. For safety, the socket
buffer size will be increased to at least PIPE_BUF [http://man7.org/linux/man-pages/man0/limits.h.0p.html] and BUFSIZ [http://man7.org/linux/man-pages/man0/stdio.h.0p.html] if the
default is smaller than these values.

Writes to the socket (on Linux or GNU Hurd) will block until there is capacity
available in the socket buffer. If the process uses sendfile(2) [http://man7.org/linux/man-pages/man2/sendfile.2.html] then (on
Linux) the writes occur in PIPE_BUF [http://man7.org/linux/man-pages/man0/limits.h.0p.html] sized chunks so it works as normal, but
why are you using an interactive program that outputs such large quantities of
data?

For more details read the architecture document.

FreeBSD/OpenBSD/Darwin

Writes to the socket do not block when the receive buffer of the peer socket is
full. The default socket receive buffer is quite small so it will be raised to
512KB (for the send buffer, 256KB). This avoids problems most of the time.

Messages are likely to be lost from programs that write large amounts of data
(more than 128..256KB) very quickly or do so inefficiently (1 byte at a time).

NetBSD

Like FreeBSD/OpenBSD/Darwin but the socket buffer can only be raised to
128KB so messages are very likely to be lost if data is written quickly. Unlike
the other BSDs, this will result in an error on the receive call so it will not
go unreported.

DragonFlyBSD

Like FreeBSD/OpenBSD/Darwin but even with a 512KB socket buffer it loses
messages of PIPE_BUF [http://man7.org/linux/man-pages/man0/limits.h.0p.html] size that are written very quickly. Writes of BUFSIZ [http://man7.org/linux/man-pages/man0/stdio.h.0p.html]
size are ok because they result in fewer messages.

GNU Hurd

Does not currently have support for returning addresses of Unix sockets, so none
of the output works. It may be possible to implement custom pipe-like objects
with three file descriptors in user space.

Writes larger than the page size (4KB) are truncated and there’s no way to
increase the size of the socket buffer.

Cygwin

Performs as well as Linux but the maximum amount of data that can be streamed
quickly is limited by the size of the socket buffer (which will will be raised
to 2MB).

There are security issues because the underlying implementation of Unix sockets
is a UDP socket on localhost. This presents an opportunity for another process
to bind the same port after dtee or the command being run exits, which will
allow it to:

	Write additional input for dtee after the child process has exited (until
waitpid(2) [http://man7.org/linux/man-pages/man2/waitpid.2.html] is processed).

	Read output from child processes if the program being run forks into the
background (causing dtee to exit).

	Read output from child processes if dtee is killed.

Build and install

The meson [https://mesonbuild.com/] build system is used to build and install dtee:

meson build/release # configure dtee build
ninja -C build/release # compile
ninja -C build/release test # run the tests
ninja -C build/release install # install to default locations

A Makefile that calls meson and ninja is provided for convenience.

See the list of dependencies for more information on
build, test and runtime requirements.

Cygwin

The build and test process makes use of symbolic links.

Allow unprivileged users to create symbolic links [https://blogs.windows.com/buildingapps/2016/12/02/symlinks-windows-10/]
by enabling Developer mode [https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development].

Set the following environment variable:

CYGWIN=winsymlinks:nativestrict

Set the following git config option:

git config core.symlinks true

Some of the tests cannot be run from an elevated process and will be skipped.

Manual page

Synopsis

dtee [option]… <command> [arguments]…

cronty [option]… <command> [arguments]…

Description

Run command with standard output and standard error copied to files while
maintaining the original standard output and standard error as normal.

Options

Output files

Standard streams can be written to any number of specified files, in
addition to normal output. Output is not line buffered.

	-o <filename>, --out-append=<filename>

	Append standard output to filename,
creating the file if it does not exist.

	-O <filename>, --out-overwrite=<filename>

	Copy standard output to filename,
truncating and overwriting existing content.

	-e <filename>, --err-append=<filename>

	Append standard error to filename,
creating the file if it does not exist.

	-E <filename>, --err-overwrite=<filename>

	Copy standard error to filename,
truncating and overwriting existing content.

	-c <filename>, --combined-append=<filename>

	Append standard output and standard error to
filename, creating the file if it does not
exist.

	-C <filename>, --combined-overwrite=<filename>

	Copy standard output and standard error to
filename, truncating and overwriting existing
content.

General options

	-i, --ignore-interrupts

	Ignore keyboard interrupt signals (SIGINT).
This does not prevent the command being executed
(and other processes in the same progress group)
from receiving the signal.

	-q, --cron

	Operate in cron mode (this is implied when invoked
as cronty). Suppresses all output unless the
process outputs an error message or has a non-zero
exit status whereupon the original output will be
written as normal and the exit code will be
appended to standard error.

Miscellaneous

	-h, --help

	Display usage information and exit.

	-V, --version

	Output version information and exit.

See also

Full documentation [https://dtee.readthedocs.io/]

Change log

1.0.0 [https://github.com/nomis/dtee/compare/0.0.1...1.0.0] – 2018-12-09

First stable release.

Added

	Best effort support on Darwin [https://opensource.apple.com/] (macOS).

	Best effort support on Cygwin [https://www.cygwin.com/].

Fixed

	Invalid usage messages now use standard error instead of standard output.

	Check build version matches the release version.

0.0.1 [https://github.com/nomis/dtee/compare/0.0.0...0.0.1] – 2018-11-11

Update to allow improvements in packaging.

Fixed

	Infinite loop in the test scripts if check variables are undefined (this is
unlikely).

	Support for unity builds [https://mesonbuild.com/Unity-builds.html] when
-Wshadow is used.

0.0.0 [https://github.com/nomis/dtee/commits/0.0.0] – 2018-11-09

Initial development release for packaging.

Added

	Full support on Linux [https://www.kernel.org/].

	Best effort support on FreeBSD [https://www.freebsd.org/] and OpenBSD [https://www.openbsd.org/].

	Basic support on NetBSD [https://www.netbsd.org/] and DragonFlyBSD [https://www.dragonflybsd.org/].

	Compiles on GNU Hurd [https://www.gnu.org/software/hurd/] (but doesn’t work).

	Comprehensive automated tests of all functionality.

Packages

Source packages for Linux distributions are kept in the dtee-package repository [https://github.com/nomis/dtee-package].

Debian binary packages

Packages are available on Bintray [https://bintray.com/dtee] for Debian [https://bintray.com/dtee/debian/dtee] and Ubuntu [https://bintray.com/dtee/ubuntu/dtee].

	Debian

	Ubuntu

RPM packages

Packages are available on Bintray [https://bintray.com/dtee] for Fedora [https://bintray.com/dtee/fedora/dtee] and Red Hat Enterprise Linux [https://bintray.com/dtee/redhat/dtee].

	Fedora

	Red Hat Enterprise Linux

Debian

Install the Bintray public key [https://bintray.com/bintray]:

wget https://bintray.com/user/downloadSubjectPublicKey?username=bintray -O - | apt-key add -

Follow the instructions for your release. If you are using a newer release than
the ones listed then use the builds for the most recent prior version.

Debian 8 (jessie)

Add the following APT [https://en.wikipedia.org/wiki/APT_(Debian)] data source
dtee-debian-jessie.list
to /etc/apt/sources.list.d/dtee.list:

deb https://dl.bintray.com/dtee/debian/ jessie main

Run the following commands:

apt install apt-transport-https
apt update
apt install dtee

Debian 9 (stretch)

Add the following APT [https://en.wikipedia.org/wiki/APT_(Debian)] data source
dtee-debian-stretch.list
to /etc/apt/sources.list.d/dtee.list:

deb https://dl.bintray.com/dtee/debian/ stretch main

Run the following commands:

apt install apt-transport-https
apt update
apt install dtee

Ubuntu

Install the Bintray public key [https://bintray.com/bintray]:

wget https://bintray.com/user/downloadSubjectPublicKey?username=bintray -O - | apt-key add -

Follow the instructions for your release. If you are using a newer release than
the ones listed then use the builds for the most recent prior version.

Ubuntu 14.04 LTS (Trusty Tahr)

Add the following APT [https://en.wikipedia.org/wiki/APT_(Debian)] data source
dtee-ubuntu-trusty.list
to /etc/apt/sources.list.d/dtee.list:

deb https://dl.bintray.com/dtee/ubuntu/ trusty main

Run the following commands:

apt update
apt install dtee

Ubuntu 16.04 LTS (Xenial Xerus)

Add the following APT [https://en.wikipedia.org/wiki/APT_(Debian)] data source
dtee-ubuntu-xenial.list
to /etc/apt/sources.list.d/dtee.list:

deb https://dl.bintray.com/dtee/ubuntu/ xenial main

Run the following commands:

apt update
apt install dtee

Ubuntu 18.04 LTS (Bionic Beaver)

Add the following APT [https://en.wikipedia.org/wiki/APT_(Debian)] data source
dtee-ubuntu-bionic.list
to /etc/apt/sources.list.d/dtee.list:

deb https://dl.bintray.com/dtee/ubuntu/ bionic main

Run the following commands:

apt update
apt install dtee

Fedora

Supported versions: 27, 28 and 29.

Save the repository configuration file
dtee-fedora.repo
to /etc/yum.repos.d/dtee-fedora.repo.

Run the following command:

yum install dtee

Red Hat Enterprise Linux

Red Hat Enterprise Linux 6

Boost 1.60 from the Red Hat Software Collections is required.

Save the repository configuration file
dtee-rhel6.repo
to /etc/yum.repos.d/dtee-rhel6.repo.

Run the following commands:

subscription-manager repos --enable "rhel-*-rhscl-6-rpms"
yum install dtee

Red Hat Enterprise Linux 7

Save the repository configuration file
dtee-rhel7.repo
to /etc/yum.repos.d/dtee-rhel7.repo.

Run the following command:

yum install dtee

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 dtee (double tee)

 		
 Architecture

 		
 Dependencies

 		
 Limitations

 		
 Build and install

 		
 Manual page

 		
 Change log

 		
 Packages

 		
 Debian

 		
 Ubuntu

 		
 Fedora

 		
 Red Hat Enterprise Linux

_static/up.png

_static/up-pressed.png

